Parallel Iterative S-Step Methods for Unsymmetric Linear Systems
نویسندگان
چکیده
GCR (Generalized Conjugate Residual) and Omin (Orthomin) are iterative methods for approximating the solution of unsymmetric linear systems. The S-step generalization of these methods has been derived and studied in past work. The S-step methods exhibit improved convergence properties. Also, their data locality and parallel properties are enhanced by forming blocks of s search direction vectors. However, s is limited (to s 5 5) by numerical stability considerations. The following new contributions are described in this article. The Modified Gram-Schmidt method is used to AT A-orthogonalize the s direction vectors within each S-step block. It is empirically shown that use of values of s, up to s = 16, preserves the numerical stability of the new iterative methods. Finally, the new S-step Omin, implemented on the CRAY C90, attained an execution rate greater than 10 Gjlops (Billion Floating Point Operations per set).
منابع مشابه
NUMERICAL ANALYSIS GROUP PROGRESS REPORT January 1994 – December 1995
2 Sparse Matrices ……………………………………………………………………………… 4 2.1 The direct solution of sparse unsymmetric linear sets of equations (I.S. Duff and J.K. Reid) …………………………………………………………………………… 4 2.2 The design and use of algorithms for permuting large entries to the diagonal 2.6 Element resequencing for use with a multiple front solver (J. A. Scott) ………… 10 2.7 Exploiting zeros on the diagonal in the direct s...
متن کاملNew insights in GMRES-like methods with variable preconditioners
In this paper we compare two recently proposed methods, FGMRES 5] and GMRESR 7], for the iterative solution of sparse linear systems with an unsymmetric nonsingular matrix. Both methods compute minimal residual approximations using preconditioners, which may be diierent from step to step. The insights resulting from this comparison lead to better variants of both methods.
متن کاملGMRESR: a family of nested GMRES methods
Recently Eirola and Nevanlinna have proposed an iterative solution method for unsymmetric linear systems, in which the preconditioner is updated from step to step. Following their ideas we suggest variants of GMRES, in which a preconditioner is constructed at each iteration step by a suitable approximation process, e.g., by GMRES itself.
متن کاملBlock s-step Krylov iterative methods
Block (including s-step) iterative methods for (non)symmetric linear systems have been studied and implemented in the past. In this article we present a (combined) block s-step Krylov iterative method for nonsymmetric linear systems. We then consider the problem of applying any block iterative method to solve a linear system with one right-hand side using many linearly independent initial resid...
متن کاملOn the squared unsymmetric Lanczos method
The biorthogonal Lanczos and the biconjugate gradient methods have been proposed as iterative methods to approximate the solution of nonsymmetric and indefinite linear systems. Sonneveld (1989) obtained the conjugate gradient squared by squaring the matrix polynomials of the biconjugate gradient method. Here we square the unsymmetric (or biorthogonal) Lanczos method for computing the eigenvalue...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Parallel Computing
دوره 22 شماره
صفحات -
تاریخ انتشار 1996